Real Life Emotion Classification using Spectral Features and Gaussian Mixture Models
نویسندگان
چکیده
منابع مشابه
Forensic speaker verification using formant features and Gaussian mixture models
A new method for speaker verification based on formant features is presented. A UBM-GMM verification system is applied to semi-automatically extracted formant features. Speakerspecific vocal tract configurations, including the speakers’ variability, are incorporated in the speaker models. Speaker comparisons are expressed as likelihood ratios (the ratio of similarity to typicality). F1, F2 and ...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملUnsupervised Classification with Non-Gaussian Mixture Models Using ICA
We present an unsupervised classification algorithm based on an ICA mixture model. The ICA mixture model assumes that the observed data can be categorized into several mutually exclusive data classes in which the components in each class are generated by a linear mixture of independent sources. The algorithm finds the independent sources, the mixing matrix for each class and also computes the c...
متن کاملSubspace Gaussian mixture models for dialogues classification
The main objective of this paper is to identify themes from dialogues of telephone conversations in a real-life customer care service. In order to capture significant semantic content in spite of high expression variability, features are extracted in a large number of hidden spaces constructed with a Latent Dirichlet Allocation (LDA) approach. Multiple views of a spoke document can then be repr...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Engineering
سال: 2012
ISSN: 1877-7058
DOI: 10.1016/j.proeng.2012.06.447